Publications

Publications

< retour aux publications

Micro-structured PDMS piezoelectric enhancement through charging conditions

Auteur(s) : A. Kachroudi, S. Basrour, L. Rufer, A. Sylvestre, F. Jomni

Journal : Smart Materials and Structures

Volume : 25

Issue : 10

Doi : 10.1088/0964-1726/25/10/105027

Micro-structured cellular polydimethylsiloxane (PDMS) materials were prepared by a low-cost molding process allowing us to control geometry and sample size. Cellular structures are charged with a triangular quasi-static voltage with amplitudes between 1 kV and 4 kV and a frequency of 0.5 Hz fixed after having evaluated the conditions enhancing the piezoelectric response of the cellular PDMS. The piezo-electret PDMS material charged at room temperature has a piezoelectric coefficient d 33 of 350 pC/N, which is ten times larger than that of polyvinylidene fluoride. The high piezoelectric coefficient with a very low elastic modulus of 300 kPa makes these materials very useful for wearable device applications. The piezoelectric coefficient d 33 of the samples poled at high temperatures improves thermal stability but reduces PDMS piezo-electret piezoelectricity, which is explained by the structure's stiffness. These results are useful and allow us to set the conditions for the preparation of the piezo-electret materials according to desired applications.