Modelling of Silicon Electrostatic Ultrasonic Transducers

L. RUFER^1, S. MIR^1

1 - TIMA Laboratory, 46 avenue Félix Viallet, 38 000 Grenoble France

TIMA Laboratory, 46 avenue Félix Viallet, 38 000 Grenoble, France
Techniques of Informatics and Microelectronics for Computer Architecture
MODELLING OF SILICON ELECTROSTATIC ULTRASONIC TRANSDUCERS

Libor.RUFER@imag.fr
Salvador.MIR@imag.fr

TIMA Laboratory
Joseph Fourier University, Grenoble, France
National Polytechnic Institute, Grenoble, France
Electrostatic (Capacitive) Transducer

- Generation and Reception of Sound
- Most Critical Component

\[
\begin{align*}
\text{h} & \quad \text{distance between the electrodes} \\
\text{S} & \quad \text{electrode surface} \\
p & \quad \text{acoustic pressure} \\
\text{U} & \quad \text{electrical voltage} \\
\text{U}_0 & \quad \text{polarization voltage}
\end{align*}
\]
Analogue Model

General Form
(Transmitter)
Electrical Part

Capacity between the Electrodes:

\[C_0 = \frac{\varepsilon_0 S}{h} \]

Electro – Mechanical Transformer :

\[n = \frac{C U_0}{h} \]

\(U_0 \) … polarization voltage
Mechanical Part

Mechanical Impedance of the Vibrating Disc \((Z_{\text{mM}})\) can be described by

- reduced mass \((M_{\text{mM}})\)
- reduced stiffness \((S_{\text{mM}})\)

In simple cases can be defined analytically, otherwise can be defined by Finite Elements Analysis.

- mechanical resistance due to internal friction

 Can be neglected comparing to the viscous damping in the acoustical part.
Acoustic Part : Front Load

Acoustic Impedance Z_{aR}

Radiation Impedance:

for $ka >> 1$ ($f >> c/(2\pi a)$) real part dominates … $R_{aR} = \rho_0 c/S$
Acoustic Part: Back Load

Acoustic Impedance Z_{aG}

Impedance of the Air-Gap

Circular Plate with an Air-Gap Open at the Circumference Side

(piston – like movement)

Equivalent Circuit

\[S = \pi r^2 \]

\[S_h = 2\pi rh \]

\[v_z \]

\[h \]

\[v_r \]

\[F_z \downarrow \]

\[C \]

\[S : S_h \]

\[X_1 \]

\[R \]

\[V_r \]

\[F_r \]
Acoustic Part: Back Load

Elements of the Equivalent Circuit (acoustic)

\(C_a \) … air-gap compliance

\[
C_a = \frac{h\pi r^2}{\rho_0 c^2}
\]

\(X_{a1} \) … imaginary part of the impedance in the radial direction

\[
X_{a1} = \frac{2\rho_0 \rho h}{\pi r^3} \left(-\frac{J_0(kr)}{J_1(kr)} + \frac{2}{kr} \right)
\]

\(R_a \) … damping resistance

\[
R_a = \frac{3\mu}{2\pi h^3}
\]

\(\mu \) … dynamic viscosity

for \(kr < 1 \):

\[
X_{a1} = \frac{\omega \rho_0 h}{2\pi r^2}
\]

\[
X_{a1} = \omega M_a
\]
Acoustic Part: Back Load

Circular Plate with an Air-Gap Open at the Center (piston)

\[S = \pi (r^2 - r_0^2) \]

\[S_0 = \pi r_0^2 \]

\[S_h = 2\pi r_0 h \]
Acoustic Part: Back Load

Equivalent Circuit
Acoustic Part : Back Load

Elements of the Equivalent Circuit (acoustic)

\[C_a = \frac{\pi r^4 (r^2 - r_0^2)}{4 \rho_0 c^2 r_0^2 h} \]

\[X_{a1} = \frac{2 \rho_0 cr_0 h}{\pi r^4} \left(-J_0 (kr_0) Y_1 (kr) + J_1 (kr_1) Y_0 (kr_0) \right) + \frac{2kr_0}{J_1 (kr_1) Y_1 (kr_0) + J_0 (kr_0) Y_1 (kr_1)} \frac{2kr_0}{(kr)^2 - (kr_0)^2} \]

\[R_a = \frac{6 \mu}{\pi h^3} \beta \]

\[\mu \ldots \text{dynamic viscosity} \]

\[\beta \ldots \text{function of } (r_0/r) \]
Numerical Example

- **Disc Dimensions** $S = 100 \times 100 \, \mu m^2$ $t = 1.5 \, \mu m$ $h = 2 \, \mu m$

- **Air-Gap open: at the Circumference Side (side) / at the Centre (hole)**

- **Reactance X_{a1}**

- **Damping Resistance**
 - electrode open at the side:
 $R_{a(side)} = 1,1 \times 10^{12} \, [kg/m^4s]$
 - 1 hole 10x10 μm^2:
 $R_{a(hole)} = 6,5 \times 10^{12} \, [kg/m^4s]$
 - 25 holes 5x5 μm^2:
 $R_{a(hole)} = 7 \times 10^{10} \, [kg/m^4s]$
Application of the Model

Air-Coupled Arrangement

Transfer Function

(derived from the reciprocity theorem)

\[
\begin{pmatrix}
\frac{p_{out}}{i_{in}} \\
\frac{u_{in}}{q_{out}}
\end{pmatrix}_{q_{out} = 0} = \begin{pmatrix}
\frac{u_{in}}{q_{out}}
\end{pmatrix}_{i_{in} = 0}
\]
Sensor:

\[M_s = \frac{u_{out}}{p_{in}} = \frac{U_0 S}{j\omega Z_m h} \quad [V/Pa] \]

Transmitter:

\[M_t = \frac{p_{out}}{u_{in}} = \frac{j\pi \rho_0 f^2 M_s C_0}{d(1+jkR_{eff})} \quad [Pa/V] \]
Transfer Function:

\[T \frac{u_{\text{out}}}{u_{\text{in}}} = \frac{\pi \rho_0 f^2 M M C t_0}{d (1 + jkR_{\text{eff}})} \]
Conclusion

• Complete mechanical/acoustic model is necessary to describe transducer behaviour

• The presented model can be easily implemented with electrical equivalent circuit

• The model can be used to determine
 – frequency response
 – input impedance
 – thermal noise due to transducer

• Future work
 – verification of the model with fabricated test structures
 – more detailed description of the acoustics part