CLASS – Clockless Logic, Analysis, Synthesis & Systems

Roger Brees
Boeing Solid-State Electronics Development

Sponsors: DARPA Microsystems Technology Office and Air Force Research Labs
Motivation

• Development cost of advanced ASICs is becoming too great for low volume, DoD applications

• But DoD applications require capabilities enabled by advanced ASICs

Clockless Logic addresses many of the ASIC Development Cost Drivers

- Improves Reuse
- Simplifies Timing Design
- Reduces Power
- Reduces Noise
- Eliminates Fab Passes
CLASS Program Objectives

- Enable Very Complex SoC Designs by Overcoming Approaching Limits of Clocked Design
 - Timing Closure
 - Noise/EMI
 - IP Reuse
 - Power Management

- Key Program Goals:
 - Enable design of clockless circuits
 - Overcome clocked design inertia
 - Make clockless design available ASAP to DoD
Need for CLASS Program

• CLASS program develops critical enablers for design of clockless circuits
 • ECAD – automated clockless logic implementation and optimization
 • Multiple integrated clockless design styles providing range of power, performance, complexity, robustness
 • IP
 • Methodology

• CLASS Program demonstrates clockless in complex, highly-constrained, DoD system
 • Prove design methodology and tools
 • Provide Direct comparison of clockless system to clocked system
 • Demonstrate benefits of clockless technology in compelling defense application
CLASS Impact

CLASS will move clockless design into the mainstream

Strategy:
- Complete EDA infrastructure
- Support diverse technologies
- Show clear benefits to DoD SoC design houses
- A vs. B (clocked vs. clockless) benchmark
- Provide Compelling SoC Demonstration
- Technology Transfer – Supported by commercial companies
Approach

• Build on proven clockless design toolset from Handshake Solutions
• Support multiple clockless logic styles for increased performance, power, reliability trade space
• Enhance with Optimizations
• Demonstrate value of asynchronous design in compelling DoD application
• Compare asynchronous implementation to equivalent synchronous implementation
• Prime Contractor, Application, Demonstration Chip Design
• Null Convention Logic, Demonstration Chip Design
• Mobius Tool Flow
• Handshake Technology, Tool Flow
• Handshake Optimizations, NCL Optimizations, High-Speed Pipelines
• High-Speed Pipelines
• Locally Clocked Dynamic Logic
• Substrate Noise Coupling
• Integrated Testability Approach
• Combining benefits of broad range of Asynchronous Technologies

• Handshake Circuits
 • Very low power
 • Production design flow
 • Standard Libraries

• Null Convention Logic
 • Very low power
 • Delay insensitive

• Mousetrap High Speed Pipelines
 • Standard libraries
 • Integrated high-speed capability

• Locally Clocked Dynamic Logic
 • Highest speed capability
Clockless Design Tools

Boeing Technology | Phantom Works

CLASS

- Proven Tool Framework from Handshake Solutions
 - Simulation
 - Synthesis
 - Test
- Expanded integration with standard back-end tools
- Support for Artisan 130nm libraries
- Optimizations to push to higher performance capabilities
- Integration of High-speed pipeline (Mousetrap) technology
• Mobius from Codetronix
 • High-level Design
 • Flexibility to incorporate other asynchronous logic styles
 • Path to delay insensitive Null Convention Logic from Theseus Logic

• Integrated test strategy
• Improve power, performance for Handshake circuits and NCL circuits

• Circuit transformations
 • Peephole optimizations
 • Control re-synthesis

• Design Flow optimizations
 • Improved parallelism between data path and control path
 • Constraint driven synthesis and layout
 • Design templates
- Initial Tool Integration & Test Chip – Integrate async design tools into Boeing foundry-flexible design flow and demonstrate in silicon a significant block from the demonstration chip
- Enhanced Tools & Demonstration Chip – Develop & integrate complete async design flow and demonstrate in silicon significant benefits of clockless design using complete ASP
- Horizon Tools & Demonstration – Develop extended tool capabilities necessary to overcome clocked design inertia and demonstrate with ASP
Initial Tools & Test Chip

- Initial tool capabilities installed
- Proven with 3 test chips
- IBM 130nm CMOS8RF
- Released on Trusted Foundry Multiproject Wafer
- Estimated Delivery: May 15

T2 Test Chip
- Handshake Circuits
- 3.2M transistors (async logic)
- 1.5M bits RAM
- 427 I/O
Enhanced Tools

- Initial Optimizations incorporated
 - Handshake Circuits
 - NCL Circuits
- NCL technology integrated into Mobius tools
- Demonstration chip combines
 - Handshake Circuits
 - NCL Circuits
 - LCDL Circuits
 - Synchronous Circuits
• Compelling demonstration of async benefits
 • Improved Design Time
 • Improved Power/Performance
 • Improved Noise Characteristics

• DoD Relevant Circuit
 • Advanced Sensor Processor
 • Mix of processing styles
 – DSP
 – Numerical Methods
 • Integrated memory (25 Mbits)
 • Integration into synchronous system
 • Challenging performance (180 MHz)
 • Challenging complexity (50M XSTRS)

• Trusted Foundry release in IBM 130nm CMOS8RF
• Compare to Equivalent Synchronous Chip
Demonstration
Boeing Technology | Phantom Works

CLASS

Boeing Technology | Phantom Works

CLASS

Lab View Diagnostics
National Instruments

Real-Time

Off-Line

Source Data

Embedded PC
National Instruments

Results

Copyright © 2006 Boeing. All rights reserved.
• Complete development and integration of optimizations
• Complete integration of Mousetrap technology
• Initial system performance analysis capability
• Demonstrated using ASP circuits
Key Products

Clockless Design Infrastructure

A vs. B Comparison

Asynchronous Advanced Sensor Processor ASIC

Real-time Demonstration

Testability Techniques
• Clockless Design is enabler for advanced DoD systems

• CLASS Program is lowering the barriers to adoption of clockless logic

This material is based upon work supported by the United States Air Force and DARPA under Contract No. FA84750-04-C-0007.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force and DARPA.